Óû§Ãû ÃÜ Âë »¹Ã»×¢²á£¿

Óû§ÐÅÏ¢Çø

碳类碳纳米ç?-è¶?º§?µå??¨ç???????å¤???½è¡¨

µç¼«²ÄÁÏÃû³Æ:

µç¼«²ÄÁÏÃû³Æ ÀàÐÍ ´¢ÄÜ»úÀí ÖÆ±¸¹¤Òµ Ô­²ÄÁÏ Íâ¹Û Á£¶È ±È±íÃæ»ý ½á¹¹ÓëÐÎòͼ µç½âÒº ±ÈµçÈÝ µç»¯Ñ§ÐÔÄÜÏà¹ØÍ¼ ÐÅÏ¢À´Ô´ ÊÕ¼¯ÈË Ð£¶ÔÈË
̼ÄÉÃ×¹Ü µ¥±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ µç»¡·¨ ʯī ¾ßÓÐʯī²ã¾íÇú¶ø³ÉµÄÎÞ·ì¹Ü×´½á¹¹ / 357 6 mol/L KOH 180 K.H. An¡¢ W.S. Kim¡¢ Y.S. Park¡¢ et al. Supercapacitors Using Single-Walled CarbonNanotube Electrodes. Adv. Mater., 2001, 13(7): 497-500. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ Ê¯Ä«Æ¬Ö±½ÓÉú³¤ ʯī °ô×´ / / 6 mol/L KOH 115.7 J.H. Chen¡¢ W.Z. Li¡¢ D.Z. Wang¡¢ et al. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon, 2002, 40(8): 1193-1197.J.H. Chen, W.Z. Li, Z.P. Huang, et al. Proceedings of the 197th Meeting of Electrochemical Society, Toronto, Canada,2000, May 14-18. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü ØÍµçÈÝ ´ß»¯Áѽâ ÌþÀà °ô×´ / / 6 mol/L KOH 137 E. Frackowiak¡¢ K. Jurewicz¡¢ S. Delpeux¡¢ et al. Nanotubular materials for supercapacitors. J. Power Sources., 2001, 97-98: 822-825.E. Frackowiak¡¢ F. B¨¦guin. Carbon materials for the electrochemical storage of energy in capacitors. Carbon., 2001, 39(6): 937-950.E. Frackowiak¡¢ K. Metenier¡¢ V. Bertagna¡¢ et al. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. , 2000, 77 (15) : 2421-2423.E. Frackowiak¡¢ F. B¨¦guin. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 2002, 40(10): 1775-1787. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü ØÍµçÈÝ ´ß»¯Áѽâ ÌþÀà °ô×´ / 410 1 mol/L H2SO46 mol/L KOH 8590 E. Frackowiak¡¢ K. Jurewicz¡¢ K. Szostak¡¢ et al. Nanotubular materials as electrodes for supercapacitors. Fuel Processing Technology, 2002, 77-78(20): 213-219.E Frackowiak¡¢ S Delpeux¡¢ K Jurewicz¡¢ et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett., 2002, 361(1-2): 35-41. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü ØÍµçÈÝ ´ß»¯Áѽâ ÒÒȲ£¨C2H2£©/ÇâÆø£¨H2£© °ô×´ / / 1 mol/L H2SO4 107 F/cm3 ÂíÈÊÖ¾¡¢ κ±üÇì¡¢ Ðì²Å¼µÈ. »ùÓÚÄÉÃ×̼¹ÜµÄ³¬¼¶µçÈÝÆ÷. Öйú¿ÆÑ§(E ¼­) , 2000, 30 (2) : 112¡« 116.R.Z. Ma¡¢ J. Liang¡¢ B.Q. Wei¡¢ et al. Study of electrochemical capacitors utilizing carbon nanotube electrodes. J. Power Sources., 1999, 84: 126-129. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ ´ß»¯Áѽâ ÌþÀà °ô×´ / / 6 mol/L KOH 60 Áõ³½¹â¡¢ ÁõÃô¡¢ ÍõïÕµÈ. µç»¯Ñ§µçÈÝÆ÷ÖÐÌ¿µç¼«µÄÑо¿¼°¿ª·¢. ÐÂÐÍÌ¿²ÄÁÏ, 2002, 17(2): 64-72. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ ¼¤¹âÊø³Á»ý·¨ ÌþÀà °ô×´ / / Óлúµç½âÒº 75 L. Diederich¡¢ E. Barborini¡¢ P. Piserietal. Supercapacitors based on nanostructured carbon electrodes grown by cluster-beam deposition. Appl.Phys. Lett., 1999, 75 (17): 2662¡« 2664. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ ¼¤¹âÊø³Á»ý·¨ ÌþÀà °ô×´ / / 1.4 mol/L TEABF4 65 E. Frackowiak¡¢ K. Jurewicz¡¢ K. Szostak¡¢ et al. Nanotubular materials as electrodes for supercapacitors. Fuel Processing Technology, 2002, 77-78(20): 213-219.E Frackowiak¡¢ S Delpeux¡¢ K Jurewicz¡¢ et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett., 2002, 361(1-2): 35-41. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ ´ß»¯Áѽâ ÒÒȲ£¨C2H2£© °ô×´ / / 1 mol/L LiClO4 18.2 B. Zhang¡¢ J. Liang¡¢ C.L. Xu¡¢ et al. Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte. Mater. Lett., 2001, 51(6): 539-542. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ »¯Ñ§ÆøÏà³Á»ý ¼×Í飨CH4£© °ô×´ / 510.5 1 mol/L LiClO4 50 Q. Jiang¡¢ M.Z. Qu¡¢ G.M. Zhou¡¢ et al. A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Mater. Lett., 2002, 57(4): 988-991. ÖÜÃÎçù ¾Ïºè·É
̼ÄÉÃ×¹Ü ¶à±Ú̼ÄÉÃ×¹Ü Ë«µç²ãµçÈÝ ´ß»¯Áѽâ ÌþÀà °ô×´ / 430 1mol/L H2SO4 49-113 C. Niu¡¢ E.K. Sichel¡¢ D. Moy¡¢ H. Tennent. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett., 1997, 70(11): 1480?1482. ÖÜÃÎçù ¾Ïºè·É
Ê×Ò³ ÉÏÒ»Ò³ ÏÂÒ»Ò³ ĩҳ µÚ1Ò³/ ¹²1Ò³ תÖÁ Ò³

IE6ÖÐĪÃûÆäÃîµÄbugµÄÐÞ²¹£¨³¤¶ÈËõ¶Ì£¬µ×²¿ËµÃ÷ÇøÏÔʾ²»¹»£©